Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor.

نویسندگان

  • M Hugues
  • G Romey
  • D Duval
  • J P Vincent
  • M Lazdunski
چکیده

This paper describes the interaction of apamin, a bee venom neurotoxin, with the mouse neuroblastoma cell membrane. Voltage-clamp analyses have shown that apamin at low concentrations specifically blocks the Ca2+-dependent K+ channel in differentiated neuroblastoma cells. Binding experiments with highly radiolabeled toxin indicate that the dissociation constant of the apamin-receptor complex in differentiated neuroblastoma cells is 15-22 pM and the maximal binding capacity is 12 fmol/mg of protein. The receptor is destroyed by proteases, suggesting that it is a protein. The binding capacity of neuroblastoma cells for radiolabeled apamin dramatically increases during the transition from the nondifferentiated to the differentiated state. The number of Ca2+-dependent K+ channels appears to be at most 1/5th the number of fast Na+ channels in differentiated neuroblastoma. The binding of radiolabeled apamin to its receptor is antagonized by monovalent and divalent cations. Na+ inhibition of the binding of 125I-labeled apamin is of the competitive type (Kd(Na+) = 44 mM). Guanidinium and guanidinated compounds such as amiloride or neurotensin prevent binding of 125I-labeled apamin, the best antagonist being neurotensin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone, a potent and highly selective small molecule blocker of the large-conductance voltage-gated and calcium-dependent K+ channel.

The large-conductance voltage-gated and calcium-dependent K(+) (BK) channels are widely distributed and play important physiological roles. Commonly used BK channel inhibitors are peptide toxins that are isolated from scorpion venoms. A high-affinity, nonpeptide, synthesized BK channel blocker with selectivity against other ion channels has not been reported. We prepared several compounds from ...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.

The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) aft...

متن کامل

Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats

  The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 1982